Efficacy of machine learning algorithms versus conventional assessment techniques in predicting postoperative complications in general surgery: a comprehensive literature review
DOI:
https://doi.org/10.56183/iberojhr.v4is.627Palavras-chave:
machine learning, efficacy, predicting postoperative complications, general surgery, literature review.Resumo
We examine machine learning algorithms' efficacy and core abilities versus conventional methods in predicting postoperative complications in general surgery. Our findings revealed that machine learning algorithms generally supervised and non-supervised assessment techniques in predicting postoperative complications, offering greater accuracy and reliability, thus suggesting a shift towards integrating these advanced tools in clinical practice. This paper discusses the potential of machine learning to revolutionize postoperative care, enhancing prediction accuracy and improving patient outcomes significantly.
Referências
Afrash, M. R., Shafiee, M., & KazemiArpanahi, H. (2023). Establishing machine learning models to predict the early risk of gastric cancer based on lifestyle factors. BMC Gastroenterology, 23(1). https://doi.org/10.1186/s1287602202626x
Bektaş, M., Reiber, B. M. M., Pereira, J. C., Burchell, G. L., & Van Der Peet, D. L. (2022). Artificial intelligence in Bariatric Surgery: Current status and future perspectives. Obesity Surgery, 32(8), 2772–2783. https://doi.org/10.1007/s11695022061461
Bektaş, M., Tuynman, J. B., Pereira, J. C., Burchell, G. L., & Van Der Peet, D. L. (2022). Machine Learning Algorithms for Predicting Surgical Outcomes after Colorectal Surgery: A Systematic Review. World Journal of Surgery, 46(12), 3100–3110. https://doi.org/10.1007/s00268022067281
Brownlee, J. (2019, August 12). Overfitting and underfitting with machine learning algorithms. MachineLearningMastery.com. https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
Chandrasekhar, N., & Peddakrishna, S. (2023). Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes, 11(4), 1210. https://doi.org/10.3390/pr11041210
Davis, S., Zhang, J., Lee, I., Rezaei, M., Greiner, R., McAlister, F. A., & Padwal, R. (2022). Effective hospital readmission prediction models using machinelearned features. BMC Health Services Research, 22(1). https://doi.org/10.1186/s1291302208748y
Javed, H., Olanrewaju, O. A., Owusu, F. A., Saleem, A., Pavani, P., Tariq, H., Ortiz, B. S. V., Ram, R., & Varrassi, G. (2023). Challenges and Solutions in Postoperative Complications: A narrative review in General surgery. Curēus. https://doi.org/10.7759/cureus.50942
Jiang, H., Liu, L., Wang, Y., Ji, H., Ma, X., Wu, J., Huang, Y., Wang, X., Gui, R., Zhao, Q., & Chen, B. (2021). Machine learning for the prediction of complications in patients after mitral valve surgery. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.771246
Kang, C. M., Ku, H. J., Moon, H. H., Kim, S., Jo, J. H., Choi, Y. I., & Shin, D. H. (2024). Predicting safe liver resection volume for major hepatectomy using artificial intelligence. Journal of Clinical Medicine, 13(2), 381. https://doi.org/10.3390/jcm13020381
Mehra, T., Schönegg, D., Ebner, J., Moos, R. M., Schumann, P., Gander, T., Essig, H., & Lanzer, M. (2021). ASA score and procedure type predict complications and costs in maxillofacial reconstructive surgery: a retrospective study using a hospital administrative database. Schweizerische Medizinische Wochenschrift, 151(1516), w20497. https://doi.org/10.4414/smw.2021.20497
Mufti, H. N., Hirsch, G. M., Abidi, S. R., & Abidi, S. S. R. (2019). Exploiting Machine learning algorithms and methods for the prediction of agitated delirium after cardiac surgery: Models Development and Validation study. JMIR Medical Informatics, 7(4), e14993. https://doi.org/10.2196/14993
Peng, Y., Wang, Y., Wen, Z., Xiang, H., Guo, L., Su, L., He, Y., Pang, H., Zhou, P., & Zhan, X. (2024). Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1321923
Qi, Y., Hu, D., Jiang, Y., Wu, Z., Zheng, M., Chen, E. X., Liang, Y., Sadi, M. A., Zhang, K., & Chen, Y. P. (2023). Recent progresses in machine learning assisted raman spectroscopy. Advanced Optical Materials, 11(14). https://doi.org/10.1002/adom.202203104
Sarker, I. H. (2021). Machine learning: algorithms, Real-World applications and research directions. SN Computer Science/SN Computer Science, 2(3). https://doi.org/10.1007/s42979-021-00592-x
Shelke, P., Gole, A., Kanherkar, P., & Abhishek, P. (2023). Comparative analysis of machine learning algorithms: Random Forest algorithm, Naive Bayes Classifier, and KNN A survey. In National Conference on Applied Sciences & Information Technology 2022, Nagpur, Maharashtra, India.
Shickel, B., Loftus, T. J., Ruppert, M., Upchurch, G. R., Ozrazgat-Baslanti, T., Rashidi, P., & Bihorac, A. (2023). Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27418-5
Singal, A. G., Mukherjee, A., Elmunzer, J. B., Higgins, P. D. R., Lok, A. S., Zhu, J., Marrero, J. A., & Waljee, A. K. (2013). Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. the American Journal of Gastroenterology, 108(11), 1723–1730. https://doi.org/10.1038/ajg.2013.332
Stam, W. T., Goedknegt, L. K., Ingwersen, E. W., Schoonmade, L. J., Bruns, E. R., & Daams, F. (2022). The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. Surgery, 171(4), 1014–1021. https://doi.org/10.1016/j.surg.2021.10.002
Stam, W. T., Ingwersen, E. W., Ali, M., Spijkerman, J. T., Kazemier, G., Bruns, E. R. J., & Daams, F. (2023). Machine learning models in clinical practice for the prediction of postoperative complications after major abdominal surgery. Surgery Today, 53(10), 1209–1215. https://doi.org/10.1007/s00595-023-02662-4
T. wessel et al., 2021. The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. (n.d.). ResearchGate. https://www.researchgate.net/publication/356345455_The_prediction_of_surgical_complications_using_artificial_intelligence_in_patients_undergoing_major_abdominal_surgery_A_systematic_review
Tetreault, L., Le, D., C⊚Té, P., & Fehlings, M. (2015). Article Commentary: The Practical Application of Clinical Prediction Rules: A Commentary Using Case Examples in Surgical Patients with Degenerative Cervical Myelopathy. Global Spine Journal, 5(6), 457–465. https://doi.org/10.1055/s00351567838
Traunero, F., Claps, F., Silvestri, T., Mir, M. C., Ongaro, L., Rizzo, M., Piasentin, A., Liguori, G., Vedovo, F., Celia, A., Trombetta, C., & Pavan, N. (2022). Reliable Prediction of PostOperative Complications’ Rate Using the G8 Screening Tool: A Prospective Study on Elderly Patients Undergoing Surgery for Kidney Cancer. Journal of Clinical Medicine, 11(13), 3785. https://doi.org/10.3390/jcm11133785
Van Kooten, R. T., Bahadoer, R. R., Ter Buurkes De Vries, B., Wouters, M. W. J. M., Tollenaar, R. a. E. M., Hartgrink, H. H., Putter, H., & Dikken, J. L. (2022). Conventional regression analysis and machine learning in prediction of anastomotic leakage and pulmonary complications after esophagogastric cancer surgery. Journal of Surgical Oncology, 126(3), 490–501. https://doi.org/10.1002/jso.26910
Xu, X., Li, J., Zhu, Z., Zhao, L., Wang, H., Song, C., Chen, Y., Zhao, Q., Yang, J., & Pei, Y. (2024). A comprehensive review on synergy of Multi-Modal data and AI technologies in medical diagnosis. Bioengineering, 11(3), 219. https://doi.org/10.3390/bioengineering11030219
Xue, Q., Wen, D., Ji, M., Tong, J., Yang, J., & Zhou, C. (2021). Developing machine learning algorithms to predict pulmonary complications after emergency gastrointestinal surgery. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.655686
Zeng, J., Li, K., Cao, F., & Zheng, Y. (2023). Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEERbased study. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1131859
Zeng, S., Li, L., Hu, Y., Luo, L., & Fang, Y. (2021). Machine learning approaches for the prediction of postoperative complication risk in liver resection patients. BMC Medical Informatics and Decision Making, 21(1). https://doi.org/10.1186/s12911021017313
Zhang, H., Zhao, J., Farzan, R., & Otaghvar, H. A. (2024). Risk predictions of surgical wound complications based on a machine learning algorithm: A systematic review. International Wound Journal, 21(1). https://doi.org/10.1111/iwj.14665
Zhou, J., Zhou, Y., Cao, S., Li, S., Wang, H., Niu, Z., Chen, D., Wang, D., Lv, L., Zhang, J., Li, Y., Jiao, X., Tan, X., Zhang, J., Wang, H., Zhang, B., Lu, Y., & Sun, Z. (2015). Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A singlecenter cohort report. Scandinavian Journal of Gastroenterology, 51(1), 8–15. https://doi.org/10.3109/00365521.2015.1063153
Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., & Hoffman, M. M. (2019). Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion, 50, 71–91. https://doi.org/10.1016/j.inffus.2018.09.012
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 María Joaquina Vargas Ladinez, Carla Beatríz Delgado Figueroa, Paola Gissela Placencia Guartatanga, Bryan Andrés Andrade Veloz, Christian Andrés Lascano Arias, Yaonel Fonseca Dominguez

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.