Impact of image-guided surgical techniques in complex bone reconstruction for maxillofacial fractures
DOI:
https://doi.org/10.56183/iberojhr.v4is.678Palavras-chave:
image-guided surgery. maxillofacial fractures. complex bone reconstruction. 3D imaging. computer-assisted navigation.Resumo
Maxillofacial fractures present complex surgical challenges that require precise reconstruction techniques. Image-guided surgical methods, including computer navigation and 3D imaging, are increasingly used to improve surgical outcomes, yet selecting the optimal modality remains difficult due to the varying benefits of each technology. The databases used in the current research include, but are not limited to, PubMed, Scopus, and Google Scholar for article searches. Controlling for sources of bias, the review selected publications on image-guided surgical approaches to managing craniofacial fractures. Studies were identified based on the following criteria: methodology, relevance and patient-oriented results. Thus, analytical categories were developed to evaluate the results, including surgical meticulousness, complication incidences healing, and overall patient satisfaction. The research shows that the availability of enhanced imaging tools and navigation, including CT-nav, 3D-image ster, and intra-operative CBCT, enhances surgical precision and diagnostic accuracy. Preoperative planning repeatability when using CAN was up to 86.5%, and the need for revisions in maxillofacial trauma patients was reduced. Research on computation mirroring for navigation found differences between 0.12 mm, revealing enhanced surgery accuracy. Evaluations of image-guided techniques indicate their advantage over other methods in maxillofacial fracture operations in terms of accuracy and efficiency. Even nowadays, they provide significant improvements in patients’ treatment and surgical precision despite certain shortcomings in terms of technology and availability. Further studies need to consider enhancements to the navigation systems and consider cost benefits, depending on the type of setting in which the patient is located.
Referências
Abosadegh, M. M., Saddki, N., Al-Tayar, B., & Rahman, S. A. (2019). Epidemiology of Maxillofacial Fractures at a Teaching Hospital in Malaysia: A Retrospective Study. BioMed Research International, 2019. https://doi.org/10.1155/2019/9024763
Alasraj, A., Alasseri, N., & Al-Moraissi, E. (2021). Does Intraoperative Computed Tomography Scanning in Maxillofacial Trauma Surgery Affect the Revision Rate? Journal of Oral and Maxillofacial Surgery, 79(2), 412–419. https://doi.org/10.1016/j.joms.2020.09.025
Alkhayatt, N. M., Alzahrani, H. H., Ahmed, S., Alotaibi, B. M., Alsaggaf, R. M., ALAlmuaysh, A. M., & Alomair, A. A. (2023). Computer-assisted navigation in oral and maxillofacial surgery: A systematic review. The Saudi Dental Journal, 36(3), 387–394. https://doi.org/10.1016/j.sdentj.2023.12.002
Blumer, M., Kumalic, S., Gander, T., Lanzer, M., Rostetter, C., Rücker, M., & Lübbers, H. T. (2018). Retrospective analysis of 471 surgically treated zygomaticomaxillary complex fractures. Journal of Cranio-Maxillo-Facial Surgery : Official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 46(2), 269–273. https://doi.org/10.1016/J.JCMS.2017.11.010
Buchipudi Sandeep Reddy, Naik, D., & Deepika Kenkere. (2023). Role of Multidetector Computed Tomography in the Evaluation of Maxillofacial Trauma. Cureus. https://doi.org/10.7759/cureus.35008
Chen, J., Abousy, M., Patel, V., Duclos, O., Jenny, H. E., Steinberg, J. P., Redett, R. J., & Yang, R. (2020). The Impact of Virtual Surgical Planning on Orthognathic Surgery: A Comparison of 2 Specialties. Plastic and Reconstructive Surgery - Global Open, 8(9S), pp. 114–115. https://doi.org/10.1097/01.gox.0000720912.65855.13
Dod, G., Jibhakate, R., & Walke, P. (2023). A review on 3D printing maxillofacial surgery: Present work and prospects. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.06.049
Gröbe, A., Weber, C., Schmelzle, R., Heiland, M., Klatt, J., & Pohlenz, P. (2009). The use of navigation (BrainLAB Vector vision2) and intraoperative 3D imaging system (Siemens et al. 3D) in the treatment of gunshot wounds of the maxillofacial region. Oral and Maxillofacial Surgery, 13(3), 153–158. https://doi.org/10.1007/S10006-009-0166-4/METRICS
Hu, R., Zhang, X., Liu, J., Wu, J., Wang, R., & Zeng, X. (2022). Clinical application of cinematic rendering in maxillofacial fractures. International Journal of Oral and Maxillofacial Surgery, 51(12), 1562–1569. https://doi.org/10.1016/j.ijom.2022.05.003
Johner, J. P., Wiedemeier, D., Hingsammer, L., Gander, T., Blumer, M., & Wagner, M. E. H. (2020). Improved Results in Closed Reduction of Zygomatic Arch Fractures by the Use of Intraoperative Cone-Beam Computed Tomography Imaging. Journal of Oral and Maxillofacial Surgery : Official Journal of the American Association of Oral and Maxillofacial Surgeons, 78(3), 414–422. https://doi.org/10.1016/J.JOMS.2019.10.025
Klatt, J., Heiland, M., Blessmann, M., Blake, F., Schmelzle, R., & Pohlenz, P. (2011). Clinical indication for intraoperative 3D imaging during open reduction of fractures of the neck and head of the mandibular condyle. Journal of Cranio-Maxillofacial Surgery, 39(4), 244–248. https://doi.org/10.1016/J.JCMS.2010.06.009
Lim, S. H., Kim, M. K., & Kang, S. H. (2015). Genioplasty using a simple CAD/CAM (computer-aided design and computer-aided manufacturing) surgical guide. Maxillofacial Plastic and Reconstructive Surgery, 37(1). https://doi.org/10.1186/S40902-015-0044-Y
Liu, H.-H., Li, L.-J., Shi, B., Xu, C.-W., & Luo, E. (2017). Robotic surgical systems in maxillofacial surgery: a review. International Journal of Oral Science, 9(2), 63–73. https://doi.org/10.1038/ijos.2017.24
Liu, D., Huang, J., Shan, L., & Wang, J. (2011). Intraoral curved osteotomy for prominent mandibular angle by grinding, contiguous drilling, and chiselling. The Journal of Craniofacial Surgery, 22(6), 2109–2113. https://doi.org/10.1097/SCS.0B013E318232A58A
Manson, P. N. (1999). Computed Tomography Use and Repair of Orbitozygomatic Fractures. Https://Home.Liebertpub.Com/Fpsam, 1(1), 25–26. https://doi.org/10.1001/ARCHFACI.1.1.25
Mazzoni, S., Badiali, G., Lancellotti, L., Babbi, L., Bianchi, A., & Marchetti, C. (2010). Simulation-Guided Navigation. Journal of Craniofacial Surgery, 21(6), 1698–1705. https://doi.org/10.1097/scs.0b013e3181f3c6a8
Murphy, C., O’Connell, J. E., Kearns, G., & Stassen, L. (2015). Sports-Related Maxillofacial Injuries. The Journal of Craniofacial Surgery, 26(7), 2120–2123. https://doi.org/10.1097/SCS.0000000000002109
Papel, I. D., & Jiannetto, D. F. (1999). Advances in computer imaging/applications in facial plastic surgery. Facial Plastic Surgery : FPS, 15(2), 119–125. https://doi.org/10.1055/S-2008-1064308
Park, S. Y., Hwang, D. S., Song, J. M., & Kim, U. K. (2019). Comparison of time and cost between conventional surgical planning and virtual surgical planning in orthognathic surgery in Korea. Maxillofacial Plastic and Reconstructive Surgery, 41(1), 1–7. https://doi.org/10.1186/S40902-019-0220-6/FIGURES/3
Pierrefeu, A., Terzic, A., Volz, A., Courvoisier, D., & Scolozzi, P. (2015). How Accurate Is the Treatment of Midfacial Fractures by a Specific Navigation System Integrating “Mirroring” Computational Planning? Beyond Mere Average Difference Analysis. Journal of Oral and Maxillofacial Surgery, 73(2), 315.e1–315.e10. https://doi.org/10.1016/j.joms.2014.09.022
Pohlenz, P., Blake, F., Blessmann, M., Smeets, R., Habermann, C., Begemann, P., Schmelzle, R., & Heiland, M. (2009). Intraoperative cone-beam computed tomography in oral and maxillofacial surgery using a C-arm prototype: first clinical experiences after treatment of zygomaticomaxillary complex fractures. Journal of Oral and Maxillofacial Surgery : Official Journal of the American Association of Oral and Maxillofacial Surgeons, 67(3), 515–521. https://doi.org/10.1016/J.JOMS.2008.06.086
Roncari, A., Bianchi, A., Taddei, F., Marchetti, C., Schileo, E., & Badiali, G. (2015). Navigation in Orthognathic Surgery: 3D Accuracy. Facial Plastic Surgery, 31(05), 463–473. https://doi.org/10.1055/s-0035-1564716
Rashid, A., Feinberg, L., & Fan, K. (2024). The Application of Cone Beam Computed Tomography (CBCT) on the Diagnosis and Management of Maxillofacial Trauma. Diagnostics, 14(4), 373. https://doi.org/10.3390/diagnostics14040373
Seok, H., Kim, S. G., Park, Y. W., & Lee, Y. C. (2017). Postoperative Three-Dimensional Evaluation of Mandibular Contouring Surgery Using Computer-Assisted Simulation Planning and a Three-Dimensional-Printed Surgical Guide. The Journal of Craniofacial Surgery, 28(3), 768–770. https://doi.org/10.1097/SCS.0000000000003442
Souza, G. A., Ribeiro, R. da C., Azevedo, F., & Freitas, P. H. L. de. (2016). Reduction mandibuloplasty for facial aesthetic enhancement in western women - a case report. Bioscience Journal, 32(3), 781–786. https://doi.org/10.14393/bj-v32n3a2016-32080
Singh, M., Ricci, J. A., & Caterson, E. J. (2015). Use of Intraoperative Computed Tomography for Revisional Procedures in Patients with Complex Maxillofacial Trauma. Plastic and Reconstructive Surgery. Global Open, 3(7). https://doi.org/10.1097/GOX.0000000000000455
Tominaga, K., Habu, M., Tsurushima, H., Takahashi, O., & Yoshioka, I. (2016). CAD/CAM splint based on soft tissue 3D simulation for treatment of facial asymmetry. Maxillofacial Plastic and Reconstructive Surgery, 38(1). https://doi.org/10.1186/S40902-016-0050-8
Tzou, C. H. J., Artner, N. M., Pona, I., Hold, A., Placheta, E., Kropatsch, W. G., & Frey, M. (2014). Comparison of three-dimensional surface-imaging systems. Journal of Plastic, Reconstructive & Aesthetic Surgery : JPRAS, 67(4), 489–497. https://doi.org/10.1016/J.BJPS.2014.01.003
Tzou, C. H. J., & Frey, M. (2011). Evolution of 3D surface imaging systems in facial plastic surgery. Facial Plastic Surgery Clinics of North America, 19(4), 591–602. https://doi.org/10.1016/J.FSC.2011.07.003
Valls-Ontañón, A., Ascencio-Padilla, R. D. J., Vela-Lasagabaster, A., Sada-Malumbres, A., Haas-Junior, O. L., Masià-Gridilla, J., & Hernández-Alfaro, F. (2020). Relevance of 3D virtual planning in predicting bony interferences between distal and proximal fragments after sagittal split osteotomy. International Journal of Oral and Maxillofacial Surgery, 49(8), 1020–1028. https://doi.org/10.1016/j.ijom.2019.12.001
Vujcich, N., & Gebauer, D. (2018). Current and evolving trends in the management of facial fractures. Australian Dental Journal, 63 Suppl 1, S35–S47. https://doi.org/10.1111/ADJ.12589
Zhang, C., Teng, L., Chan, F. C., Xu, J. J., Lu, J. J., Xie, F., Zhao, J. Y., Xu, M. B., & Jin, X. L. (2014). Single-stage surgery for contouring the prominent mandibular angle with a broad chin deformity: En-bloc Mandibular Angle-Body-Chin Curved Ostectomy (MABCCO) and Outer Cortex Grinding (OCG). Journal of Cranio-Maxillofacial Surgery, 42(7), 1225–1233. https://doi.org/10.1016/J.JCMS.2014.03.004
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Daniel Alejandro Flores Gutierrez, Jorge Erick Fernandez Hidalgo, Yadira Alexandra Cuzco Ramírez, Daniela Beatriz Ganchozo Peralta

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.