Dianas moleculares en la inmunoterapia contra el cáncer de mama en mujeres en edad fértil: Revisión Bibliográfica

Autores

DOI:

https://doi.org/10.56183/iberojhr.v5i1.726

Palavras-chave:

Dianas moleculares; Inmunoterapia; Cáncer de mama; Mujeres; Edad fértil.

Resumo

Introducción: El problema de cáncer de mama en mujeres en edad fértil no deja de ser un tema relevante y actual, que amerita revisar las investigaciones realizadas por los expertos en la materia. Objetivo: Comparar las evidencias científicas disponibles sobre el avance en el desarrollo de nuevas terapias oncológicas dirigidas a dianas moleculares específicas para el control del Cáncer de Mama en mujeres en edad fértil. Métodos: Estudio descriptivo no experimental, con metodología cualitativa para la recolección de datos. Se utilizó enfoque integrado en la evaluación para recopilar metódicamente la literatura de fuentes académicas confiables, como Science direct y PubMed. Las frases clave incluidas en la búsqueda bibliográfica fueron “Molecular target”, “Immunotherapy”, “Breast cancer”, “Women” y “Childbearing age”, refinando la búsqueda con el operador booleano AND, a través de los términos DeSC / MeSH. Resultados: Se identificaron 200 publicaciones elegibles, eliminando 75 por ser duplicadas e irrelevantes, 60 por haber sido publicadas antes del año 2019; 50 por tener menos de 6 mujeres en sus estudios, con edades superiores a los 60 años, abordando otros tipos de cáncer. Finalmente, del cribado quedaron 15 artículos completos incluidos, cumpliendo los criterios de inclusión.

Biografia do Autor

Ángeles Tamia De la Fuente Fernández , Technical University of Ambato (UTA), Ecuador

Student of the Faculty of Health Sciences, Medicine Degree, Technical University of Ambato (UTA), Ecuador.

Josué Acosta Acosta, Technical University of Ambato (UTA), Ecuador

Professor at the Faculty of Health Sciences, Medicine Department, Technical University of Ambato (UTA), Ecuador.

 

Referências

Abrahamsson, A., Rodríguez, G. V., & Dabrosin, C. (2020). Fulvestrant-Mediated Attenuation of the Innate Immune Response Decreases ER+ Breast Cancer Growth In Vivo More Effectively than Tamoxifen. Cancer research, vol. 80, No. 20: p. 4487–4499. En: https://doi.org/10.1158/0008-5472.CAN-20-1705

Abramiuk, M., Grywalska, E., Małkowska, P., Sierawska, O., Hrynkiewicz, R., & Niedźwiedzka-Rystwej, P. (2022). The Role of the Immune System in the Development of Endometriosis. Cells, vol. 11, No. 13, 2028. En: https://doi.org/10.3390/cells11132028

Bai, Y., Guo, J., Liu, Z., Li, Y., Jin, S., & Wang, T. (2020). The Role of Exosomes in the Female Reproductive System and Breast Cancers. OncoTargets and therapy, Vol. 13: p. 12567–12586. En: https://doi.org/10.2147/OTT.S281909

Chadha, J., Nandi, D., Atri, Y., & Nag, A. (2021). Significance of human microbiome in breast cancer: Tale of an invisible and an invincible. Seminars in cancer biology, vol. 70, p. 112–127. En: https://doi.org/10.1016/j.semcancer.2020.07.010

Chen, L., Jiang, Y., Wu, S., Wu, J., Di, G., Liu, G., Yu, K., Fan, L., Li, J., Hou, Y., Hu, Z., Chen, C., Huang, X., Cao, A., Hu, X., Zhao, S., Ma, X., Xu, Y., Sun, X., Chai, W., … Shao, Z. (2022). Famitinib with Camrelizumab and Nab-Paclitaxel for Advanced Immunomodulatory Triple-Negative Breast Cancer (FUTURE-C-Plus): An Open-Label, Single-Arm, Phase II Trial. Clinical cancer research: an official journal of the American Association for Cancer Research, vol. 28, No. 3, p. 2807–2817. En: https://doi.org/10.1158/1078-0432.CCR-21-4313

Coussy, F., El Botty, R., Lavigne, M., Gu, C., Fuhrmann, L., Briaux, A., de Koning, L., Dahmani, A., Montaudon, E., Morisset, L., Huguet, L., Sourd, L., Painsec, P., Chateau-Joubert, S., Larcher, T., Vacher, S., Melaabi, S., Salomon, A. V., Marangoni, E., & Bieche, I. (2020). Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. Journal of hematology & oncology, vol. 13, No. 1, p. 13. En: https://doi.org/10.1186/s13045-020-0846-y

de Wild S, Simons J, Vrancken M, Smidt M, Koppert L. (2022). MINImal vs. MAXimal Invasive Axillary Staging and Treatment After Neoadjuvant Systemic Therapy in Node Positive Breast Cancer: Protocol of a Dutch Multicenter Registry Study (MINIMAX). Clinical Breast Cancer, 22 (1): e59-e64. En: https://doi.org/10.1016/j.clbc.2021.07.011. https://www.sciencedirect.com/science/article/pii/S1526820921001993

Eguía-Larrea, M; Parra-Pérez, C; Cabero-Moránd, T; Jiménez Rosellóna, R y Muñoz-Bellvís, L. (2024). Cáncer de mama triple negativo, receptor de andrógeno y otros marcadores. Estrategias terapéuticas. Revista de Senología y Patología Mamaria, 2024, 37; 100595. En: https://doi.org/10.1016/j.senol.2024.100595.

Gatti-Mays ME, Gameiro SR, Ozawa Y, Knudson KM, Hicks KC, Palena C, Cordes LM, Steinberg SM, Francis D, Karzai F, Lipkowitz S, Donahue RN, Jochems C, Schlom J and Gulley JL (2021). Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Front. Oncol, 10: 581801. doi: 10.3389/fonc.2020.581801.

Geurts, V., Voorwerk, L., Balduzzi, S., Salgado, R., Van de Vijver, K., van Dongen, M., Kemper, I., Mandjes, I., Heuver, M., Sparreboom, W., Haanen, J., Sonke, G., Horlings, H., & Kok, M. (2023). Unleashing NK- and CD8 T cells by combining monalizumab and trastuzumab for metastatic HER2-positive breast cancer: Results of the MIMOSA trial. Breast (Edinburgh, Scotland), No. 70, p. 76–81. En: https://doi.org/10.1016/j.breast.2023.06.007

Gilmore, N., Mohile, S., Lei, L., Culakova, E., Mohamed, M., Magnuson, A., Loh, K. P., Maggiore, R., Belcher, E., Conlin, A., Weiselberg, L., Ontko, M., & Janelsins, M. (2021). The longitudinal relationship between immune cell profiles and frailty in patients with breast cancer receiving chemotherapy. Breast cancer research: BCR, vol. 23, No. 1, p. 1-19. En: https://doi.org/10.1186/s13058-021-01388-w

González, A., Leiva, L., Pacha, A., Valenzuela, G., & Fernández, G. (2022). Epidemiología y nuevas dianas moleculares en cáncer de mama. Enfermería Investiga, vol. 7, No. 4: p. 74–88. En: https://doi.org/10.31243/ei.uta.v7i4.1871.2022

Hernández-Silva, C, Villegas-Pineda, J, & Pereira-Suárez, A. (2020). Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers. Frontiers in endocrinology, vol. 11, No. 544: 1-11. En: https://doi.org/10.3389/fendo.2020.00544

Jiang, Y., Liu, Y., Xiao, Y., Hu, X., Jiang, L., Zuo, W., Ma, D., Ding, J., Zhu, X., Zou, J., Verschraegen, C., Stover, D., Kaklamani, V., Wang, Z., & Shao, Z. (2021). Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the FUTURE trial. Cell research, vol. 31, No. 2, p. 178–186. En: https://doi.org/10.1038/s41422-020-0375-9

Korbenfeld, E. (2020). La inmunoterapia en cáncer de mama. Revista Argentina de Mastología. Vol. 39, No. 141: p. 5-14. En: https://www.revistasamas.org.ar/revistas/2020_v39_n141/03.pdf

Kumar, R., Abreu, C., Toi, M., Saini, S., Casimiro, S., Arora, A., Paul, A. M., Velaga, R., Rameshwar, P., Lipton, A., Gupta, S., & Costa, L. (2022). Oncobiology and treatment of breast cancer in young women. Cancer metastasis reviews, vol. 41, No. 3: p. 749–770. En: https://doi.org/10.1007/s10555-022-10034-6

Laborda-Illanes, A., Sánchez-Alcoholado, L., Dominguez-Recio, M. E., Jimenez-Rodriguez, B., Lavado, R., Comino-Méndez, I., Alba, E., & Queipo-Ortuño, M. I. (2020). Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers, vol. 12, No. 9: p. 2465. En: https://doi.org/10.3390/cancers12092465

Lefrère, H., Lenaerts, L., Borges, V. F., Schedin, P., Neven, P., & Amant, F. (2021). Postpartum breast cancer: mechanisms underlying its worse prognosis, treatment implications, and fertility preservation. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society, vol. 31, No. 3: p. 412–422. En: https://doi.org/10.1136/ijgc-2020-002072

Liu, Y., Zhu, X., Xiao, Y., Wu, S., Zuo, W., Yu, Q., Cao, A., Li, J., Yu, K., Liu, G., Wu, J., Sun, T., Cui, J., Lv, Z., Li, H., Zhu, X., Jiang, Y., Wang, Z., & Shao, Z. (2023). Subtyping-based platform guides precision medicine for heavily pretreated metastatic triple-negative breast cancer: The FUTURE phase II umbrella clinical trial. Cell research, vol. 33, No. 5, p. 389–402. En: https://doi.org/10.1038/s41422-023-00795-2

Lynce, F., Stevens, L., Li, Z., Brock, J., Gulvady, A., Huang, Y., Nakhlis, F., Patel, A., Force, J., Haddad, T., Ueno, N., Stearns, V., Wolff, A., Clark, A., Bellon, J., Richardson, E., Balko, J., Krop, I., Winer, E., Lange, P., … Polyak, K. (2024). TBCRC 039: a phase II study of preoperative ruxolitinib with or without paclitaxel for triple-negative inflammatory breast cancer. Breast cancer research: BCR, vol. 26, No. 1, p. 20. En: https://doi.org/10.1186/s13058-024-01774-0

MSP (2018). Cifras de Ecuador – Cáncer de Mama [Internet]. Ministerio de Salud Pública. [citado el 13 de mayo de 2024]. Disponible en: https://www.salud.gob.ec/cifras-de-ecuador-cancer-de-mama/

OMS (2024). Cáncer de Mama [Internet]. Organización Mundial de Salud. [citado el 5 de agosto de 2024]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer

Onkar, S., Carleton, N., Lucas, P., Bruno, T., Lee, A., Vignali, D., & Oesterreich, S. (2023). The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer discovery, vol. 13, No. 1: p. 23–40. En: https://doi.org/10.1158/2159-8290.CD-22-0475

OPS (2021). Cáncer de Mama [Internet]. Organización Panamericana de Salud. [citado el 5 de agosto de 2024]. Disponible en: https://www.paho.org/es/temas/cancer-mama

Orzołek I, Sobieraj J, Domagała-Kulawik J. (2022). Estrogens, cancer and immunity. Cancers, vol. 14, No. 9, 2265. En: https://doi.org/10.3390/cancers14092265

Pei S, Zhang P, Yang L, Kang Y, Chen H, Zhao S, Dai Y, Zheng M, Xia Y and Xie H. (2023). Exploring the role of sphingolipidrelated genes in clinical outcomes of breast cancer. Front. Immunol, 2023; 14:1116839. doi: 10.3389/fimmu.2023.1116839

Pei, S., Zhang, P., Yang, L., Kang, Y., Chen, H., Zhao, S., Dai, Y., Zheng, M., Xia, Y., & Xie, H. (2023). Exploring the role of sphingolipid-related genes in clinical outcomes of breast cancer. Frontiers in immunology, No. 14: 1116839. En: https://doi.org/10.3389/fimmu.2023.1116839

Reyes S., González K., Rodríguez C, Navarrete-Muñoz C, Salazar A, Villagra A, Caglevic C y Hepp M. (2020). Actualización general de inmunoterapia en cáncer. Rev. méd. Chile [Internet]. Jul [citado 2024 Mayo 12]; 148 (7): 970-982. En: http://dx.doi.org/10.4067/S0034-98872020000700970. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872020000700970&lng=es.

Schmid, P., Rugo, H., Adams, S., Schneeweiss, A., Barrios, C., Iwata, H., Diéras, V., Henschel, V., Molinero, L., Chui, S., Maiya, V., Husain, A., Winer, E., Loi, S., Emens, L. A., & IMpassion130 Investigators (2020). Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. Oncology, vol. 21, No. 1, p. 44–59. En: https://doi.org/10.1016/S1470-2045(19)30689-8

Seidler S & Huber D. (2020). Overview of diagnosis and treatment of breast cancer in young women. EC Gynaecoly, Si.02: 18-25. En: https://www.researchgate.net/publication/340414590_Overview_of_Diagnosis_and_Treatment_of_Breast_Cancer_in_Young_Women_EC_GYNAECOLOGY_Special_Issue_-2020

Symonds, L., Jenkins, I., Linden, H., Kurland, B., Gralow, J., Gadi, V., Ellis, G., Wu, Q., Rodler, E., Chalasani, P., Chai, X., Riedel, J., Scca Network Investigators, Stopeck, A., Brown-Glaberman, U., & Specht, J. (2022). A Phase II Study Evaluating the Safety and Efficacy of Sunitinib Malate in Combination With Weekly Paclitaxel Followed by Doxorubicin and Daily Oral Cyclophosphamide Plus G-CSF as Neoadjuvant Chemotherapy for Locally Advanced or Inflammatory Breast Cancer. Clinical breast cancer, vol. 22, No. 1, p. 32–42. En: https://doi.org/10.1016/j.clbc.2021.05.009

Terkper, S; Doebley, A; Ahearn, T; Yarney, J; Titiloye, N; Hamel, N; Adjei, E; Clegg, J; Edusei, L; Awuah, B; Xiaoyu, S; Vanderpuye, V; Abubakar, M; Duggan, M; Stover, D, et al (2021). Circulating tumor DNA is readily detectable among Ghanaian breast cancer patients supporting non-invasive cancer genomic studies in Africa. Npj, Precision Oncology, 2021; 5: 83. En: https://doi.org/10.1038/s41698-021-00219-7

Toohey, K., Pumpa, K., McKune, A., Cooke, J., Welvaert, M., Northey, J., Quinlan, C., & Semple, S. (2020). The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC cancer, vol. 20, No. 1, 787: 1-12. En: https://doi.org/10.1186/s12885-020-07295-1

Tsimberidou, A., Guenther, K., Andersson, B., Mendrzyk, R., Alpert, A., Wagner, C., Nowak, A., Aslan, K., Satelli, A., Richter, F., Kuttruff-Coqui, S., Schoor, O., Fritsche, J., Coughlin, Z., Mohamed, A., Sieger, K., Norris, B., Ort, R., Beck, J., Vo, H., … Walter, S. (2023). Feasibility and Safety of Personalized, Multi-Target, Adoptive Cell Therapy (IMA101): First-in-Human Clinical Trial in Patients with Advanced Metastatic Cancer. Cancer immunology research, vol. 11, No. 7, p. 925–945. En: https://doi.org/10.1158/2326-6066.CIR-22-0444

Winship, A., Alesi, L., Sant, S., Stringer, J., Cantavenera, A., Hegarty, T., Requesens, C., Liew, S., Sarma, U., Griffiths, M., Zerafa, N., Fox, S., Brown, E., Caramia, F., Zareie, P., La Gruta, N., Phillips, K., Strasser, A., Loi, S., & Hutt, K. (2022). Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nature cancer, vol. 3, No. 8, p. 1–13. En: https://doi.org/10.1038/s43018-022-00413-x

Wolf, D., Yau, C., Wulfkuhle, J., Brown-Swigart, L., Gallagher, R., Lee, P., Zhu, Z., Magbanua, M., Sayaman, R., O'Grady, N., Basu, A., Delson, A., Coppé, J., Lu, R., Braun, J., I-SPY2 Investigators, Asare, S., Sit, L., Matthews, J., Perlmutter, J., … van 't Veer, L. J. (2022). Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer cell, vol. 40, No. 6, p. 609–623. e6. En: https://doi.org/10.1016/j.ccell.2022.05.005

Zhang, X., de Oliveira Andrade, F., Zhang, H., Cruz, I., Clarke, R., Gaur, P., Verma, V., & Hilakivi-Clarke, L. (2020). Maternal obesity increases offspring's mammary cancer recurrence and impairs tumor immune response. Endocrine-related cancer, vol. 27, No. 9, p. 469–482. En: https://doi.org/10.1530/ERC-20-0065

Zheng N, Yao Z, Tao S, Almadhor A, Alqahtani M, Ghoniem R, Zhao H, Li S. (2023). Application of nanotechnology in breast cancer screening under obstetrics and gynecology through the use of CNN and ANFIS. Environmental Research, Vol. 234, p. 116414. En: https://doi.org/10.1016/j.envres.2023.116414. https://www.sciencedirect.com/science/article/pii/S0013935123012185

Zong X, Yu Y, Chen W, Zong W, Yang H, Chen X. (2022). Ovarian reserve in premenopausal women with breast cancer. The Breast, Vol. 64, Pages 143-150. En: https://doi.org/10.1016/j.breast.2022.05.009. https://www.sciencedirect.com/science/article/pii/S0960977622001011

Publicado

2025-02-23

Como Citar

De la Fuente Fernández , Ángeles T., & Acosta Acosta, J. (2025). Dianas moleculares en la inmunoterapia contra el cáncer de mama en mujeres en edad fértil: Revisión Bibliográfica. Ibero-American Journal of Health Science Research, 5(1), 136–145. https://doi.org/10.56183/iberojhr.v5i1.726